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Abstract— The propose a method for local spectral component 

decomposition based on the line feature of local distribution. 

The aim is to reduce noise on multi-channel images by 

exploiting the linear correlation in the spectral domain of a local 

region. Thefirst step is to calculate a linear feature over the 

spectral components of an M-channel image, which we call the 

spectral line, and then, using the line, we decompose the image 

into three components:  a single M-channel image and two gray-

scale images. By virtue of the decomposition, the noise is 

concentrated on the two images, and thus our algorithm needs to 
denoise only the two gray- scale images, regardless of the 

number of the channels. As a result, image deterioration due to 

the imbalance of the spectral component correlation can be 

avoided. The experiment shows that our method improves image 

quality with less deterioration while preserving vivid contrast. 

The method is especially effective for hyperspectral images. The 

experimental results demonstrate that our proposed method can 

compete with the other state-of- the-art denoising methods. 

Index Terms— Spectral line, local spectral component decom- 
position, denoising, hyperspectral image. 

  

I. INTRODUCTION 

        ULTISPECTRAL/hyperspectral images are often noisy 

in many situations because sensors have narrower spectral 

sensitivity functions and thus capture less light than normal 

RGB imaging devices. Whereas various applications, such as 

classification, target  detection, spectral unmixing, and change 

detection need detailed and accurate spectral information [2], 

the noise due to, forexample,thermalelectronics and dark 

current, unavoidablycontaminatestheimage acquisition process 

[3]–[5], which disrupts detailed spectral information and 

furthermore degrades its performance in the llisted  

applications. Thus, denoising the images is a crucial phase in 

the preprocessing steps of these applications. 

It is effective for image denoising methods to exploit inter-

channel correlation as well as spatial correlation.  Unlike 

channel-by-channel methods that tend to produce an 

imbalance of colors, nowadays many smoothing and 

denoising methods take inter-channel correlation into account 

to avoid  

 

 

 

 

 

 

color deterioration as shown by state-of- the-art denoising 

methods [6]–[9]. For image restoration, Blomgren and Chan 

[6] propose the total variation (TV) for color and other vector-

valued images. Chan et al. [7] improve the TV method for 

nonlinear color models with regard to: the chromaticity-

brightness (CB) and hue-saturation-value (HSV). As a 

nonlocal filtering approach, Color BM3D (CBM3D) [8] is one 

of the most powerful denoising methods for RGB images. To 

reduce color artifacts found in CBM3D, local color nuclear 

norm (LCNN) has been introduced [9], which exploits the 

correlation among the channels using the low rank property of 

each localregion. 

Similarly, it is expected that, for the hyperspectral image, 

exploiting the correlation in  not  only  the  spatial  domain but 

also the spectral domain improves denoisingperfor- mance 

because the hyperspectral images have high corre- lation 

between adjacent channels since they are retrieved  from 

channels with a high spectral resolution. Channel-by- channel 

hyperspectral image denoising has a consequence in a low 

SNR because it ignores the spectral correlation [10].  By 

exploiting the spectral correlation, Atkinson et al. [11] restore 

hyperspectral images based on the discrete Fourier transform 

(DFT) and 2-dimensional discrete wavelet trans- form (2D-

DWT) for decorrelation in the spectral and spatial domain, 

respectively. The same motivation is also found in another 

work [3], which utilizes local/global redundancy and 

correlation(RAC)inthespatialandspectraldomain.However, this 

method is less competitive than other state-of-the-art methods 

when it comes to strong noise. Dabov et al. propose  a video 

denoising method known as VBM3D [12], which is  an 

extension of a single channel denoising method [13], where 

noiseisreducedbyusingpatchesfoundinneighboringframes. This 

method performs well for multi-channel images, which will be 

demonstrated in thisstudy. 

As an efficient feature to represent the inter-channel cor- 

relation of local regions, a color line is  introduced  in  the 

field of color image processing [14]. The color line is a linear 

cluster in the RGB color space that approximates the shape   

of color distribution in a local region. The feature is used to 

model the correlation among neighboring pixels as wellas 
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among the channels in many images processing frameworks. 

This work [14] precisely distinguishes one color from another 

by its color line. From this idea, they implement a color-line 

model for some applications, i.e. segmentation, compression, 

color editing and saturated color correction. For demosaicing, 

they also use natural image properties: least color variation 

and minimal corner value [15]. Fattal [16] exploits the color- 

line pixel regularity of a single image to introduce a new 

dehazing method. He derives a local formation model that 

explains color lines in hazy scenes and uses it for estimating 

scene transmission. Color-line-based noise reduction has also 

been introduced [17]. They elaborate the color-line model 

with conventional filters, such as the bilateral filter and then 

on local means filter, to improve their performance. Ono et al. 

exploit the color correlation by minimizing a convex function 

with the LCNN [9]. This method does not have denoising 

capability in itself, and its main purpose is to remove color 

artifacts. This method outperforms other RGB denoising 

methods, but its superiority in hyperspectral denoising is 

limited. 

The aim of this paper is to generalize the color line to the 

M-dimensional spectral line feature and introduce a method 

for local spectral component decomposition based on the spec- 

tral line. In our framework, we first calculate a linear feature 

over the spectral components of an M-channel image, which 

we call the spectral line, and then using the line we 

decompose the image into three components: a single M-

channel image and two grayscale images. By virtue of the 

decomposition, the noise is concentrated on the two images, 

and thus our algorithm needs to denoise only the two 

grayscale images, regardless of the number of channels. 

Accordingly, our method yields better denoising performance 

than the conventional methods. 

The rest of this paper is organized as follows. In Section II, 

we first demonstrate that the line property also holds for 

hyper-spectral images. Then, we describe our proposed 

algorithm based on the spectral line property. In Section III, 

we present the experimental results and compare them with 

those of other methods for both RGB color images and multi-

channel images. Finally, we conclude our research in Section 

IV. 

II. ALGORITHM 

Our method is partially based on our previous conference 

paper [1], in which the color-line property is used for 

denoising.  The  concept  of   the   color   line   is   illustrated 

in Fig. 1, where it can be seen that  a  linearity  is  formed 

from each patch of a noise-free RGB  image  as  the  color 

line. The proposed method comes from the idea that noisy 

RGB images tend to contain outliers located away from the 

color line. The color-line property is very useful to decorrelate 

the channels and has been applied to image denoising to 

reduce discoloration artifacts in RGB images [1]. The aim of 

this paper is to generalize the denoising method based on the 

line property [1] to the M-dimensional spectral line feature 

and show its effectiveness for multi-channel images. 

As for hyperspectral images, the correlation among the 

channels is also expected high due to the narrow spectral 

resolution. In line with the principle of color line for 

 

 
 

Fig. 1. Color line for RGB image. 

 
 

 
Fig. 2. Spectral line in hyperspectral images and the effect of denoising. 

 
 

RGB images, the inter-channel correlation of hyperspectral 

images is observed by plotting the local intensity distribution. 

Figure 2 visualizes the linearity of three adjacent channels (the 

channels of 12-14, 132-134, and 155-157 in Indian Pines 

data). One can see from the figure that the line property also 

holds in the example. To find some more convincing evidence, 

we observe the principal component of the hyperspectral 

image via the principal component analysis (PCA). For 

various number of channels, we confirmed that the ratio 

between the maximum eigenvalues and the sum of all 

eigenvalues is high, which implies the channels are linearly 

correlated. For example, Pavia center data has a ratio of 0.86 

for all channels, and a ratio of 0.92, 0.93, and 0.86 for 50, 35, 

and 10 adjacent channels,respectively. 

In this regard, we exploit the property for denoising. We 

first extend the color line to more general multi-channels and 

call it the spectral line. We design a denoising method for 

multi-channel images based on the spectral line property.  In 

the case of the multi-channel images, we consider the intensity 

distribution of M channels in every local region, which 

corresponds to the color distribution in RGB color images. 

The spectral line is found by applying PCA to the local 

window centered at a pixel. In our case, a noisy input is given, 

which may result in inaccurate line estimation. One possible 

solution to address this problem is to apply pre-denoising 

before PCA, but the quality of the resultant image heavily 

depends on the pre-denoising method. For example, weak 

denoising does not improve the accuracy of the line 

estimation, 

http://www.jetir.org/


© 2019 JETIR May 2019, Volume 6, Issue 5                                                                 www.jetir.org (ISSN-2349-5162) 

JETIRCY06022 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 141 
 

∈  
∈  ∈  

∈  

=+ − 

j j j 

i i i 

Ci=
. Σ

IjI
T
Σ
−µiµT. (2) 

=[ ] 

= 

∈  N 

three components:  a   mean   spectral   component  

µi ( RM), spectral line component Di( R), and 

residual component Ni(  R) (Sec. II-B). The aim of 

the decomposition is to transfer noise only to the two 

components (spectral line and residual components). 

We assume that the noise is independent and zero-

mean, and thus the mean spectral component tends to 

have little noise. Regardless of the number of 

channels, we only need to denoise the two 

components, which is especially effective for multi-

channel images with M >3. 

3) We apply smoothing to the spectral line and residual 

components (Sec.II-C). 

4) We reconstruct an image from the above components, 

and then go back to step 1 (Sec.II-D). 

 
A. Spectral Line VectorField 

1) Spectral Line Vector Estimation by PCA: The spectral 

line vector is formulated as the eigenvector that corresponds  

to the maximum eigenvalue by using PCA. The detail of the 

procedure is listed asfollows: 

1) Calculate the mean spectral component of each pixel i 

for each channel, 

1 
µi= 

Σ
Ij(i=1,2,. . . ,k), (1) 

 
 

 
Fig. 3. Flowchart of the proposed algorithm with four main steps conducted 
iteratively. 

 

 
but hard denoising may change the balance of the spectral 

information which also results in inaccurate estimation. In our 

method, we address this problem by an iterative fashion. First, 

we find an initial estimate for the spectral line from the noisy 

input, and then apply our decomposition algorithm. We apply 

a conventional denoising method to the two components 

yielded by the decomposition described in Sec.II-B and C.  

Then, we estimate the spectral line again using the denoised 

image, and repeat this procedure. As for the denoising 

method, after testing some conventional methods, we adopt 

BM3D, which gives the best performance with our method. 

The effect of the denoising is adjusted to be relatively weak at 

each iteration since the method is appliediteratively. 

The whole procedure consists of four steps as illustrated in 

Fig.3. 

1) We calculate the local spectral distribution in a window 

centered at each pixel and find the principal component 

for each pixel by PCA. We define the spectral linevector 

as the principal component and a spectral vector field   

as an image that has the spectral line vector at each pixel 

(described in Sec. II-A.1). Then, we align the direction 

of each vector by changing the sign so that the 

neighboring vector directions become smooth, which 

improves the resultant image as described in Sec.II-A.2. 

2) Using the spectral line vector, we decompose  each  

pixel Ii(∈  RM) of an M-channel image intothe 

w
j ∈N(i) 

where k is the number of pixels in an image, w is the 

number of pixels in a specified filter window N(i) and  

I j= [I 1, I 2, . . .  , I M]T is the intensity of neighboring 

pixels   j (i). M is the number of channels (e.g.  M   

3 for an RGB image). This calculation produces   the 

mean µiμ1, μ2, . . . ,  μMT ,        which  we  call  the 

mean spectralcomponent. 

2) Calculate the covariance matrix CiRM ×M of neigh- 

boring pixels around each pixel i, 

1 
 

 

w  j i 

j∈N(i) 

3) To obtain the spectral line vector, find the maximum 

eigenvalue diof the covariance matrix Ci, and sub- 

sequently derive its corresponding eigenvector as the 

spectral line vector vi. 

2) Alignment of Spectral Line: The resulting eigenvector vi 

may have sign si with an ambiguity            1 or-1     or. The 

direction of the sign should vary smoothly in our framework, 

otherwise the resultant image will have jaggy artifacts, which 

we will demonstrate with an experiment in Sec .III-A. 

To make the direction of the sign smoothly vary, we adopt 

the Jacobi relaxation method to determine the sign. For the 

vector direction alignment, the sign si should be set to fit the 

dominant direction of neighboring vectors by using the inner 

product as the criterion. To extend the pixel-wise flip to a 

larger region, a multi-resolution approach is used. 

In the initialization, to determine the sign of each vector vi 

that minimizes the following energy function among neigh- 

boringpixelpairs{i,j} :
Σ

{i,j}"sivi−sjvj"2,weadoptthe 
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Fig. 4. Flowchart of the spectral line vector alignment. 

 

 
Jacobi relaxation method [18]: 

(t1) (t) (t) 
p p q 

q∈N(p), q/= p 

which means that the sign spof  a  pixel  p  is  aligned  with the 

dominant sign of 3 3 neighboring vectors q ( p), considering 

the inner product. In practice, we calculate it with the use of 

the box filter [19] for acceleration. After finding the 

sign,weupdatethespectrallinevectoras 

ṽi=sivi 

The result of the initial flip is then processed by multi- 

grid’s V-cycle [18] as a multi-resolution approach. The multi-

resolution pyramid for vector and sign images in Fig. 4 is 

generated using Gaussian pyramid decomposition [20]. 

Additionally, in the decimation process, to give priority to 

pixels around edges that have large eigenvalues, we multiply 

the eigenvalue dias a weight for the pixel disiviand then apply 

the decimation filter and re-normalize the half-sized vector 

field. As for the multi-resolution eigenvalue images that 

consists of di, they are generated by using the same approach 

as the one used for the Gaussianpyramid. 

Figure 5 visualizes the effect of the method, in which the 

pixel values represent the cosine of  the  angle  between  viand 

a fixed vector a, that is vi, a / via with  the  inner product , . 

The pixel values are normalized to show it appropriately for 

visualization. One can see from the figure that the sign flip 

works effectively for the vectorfield. 

 
B. Spectral ComponentDecomposition 

Using the mean spectral component µiand the spectral 

 

 
 

Fig. 5.  The effect  of sign flip: sign maps (left)  before  and (right)  after   
signflip. 

 
 

the center pixel and the mean spectrum of the local window, 

OIiIiµi. Using the spectral line vector vi, the spectral   line 

component Diis calculated as the inner product of the 

normalized spectral line vector ṽ iand OIi, 

Di=ṽi
TOIi, (4) 

which is the component of OIiw.r.t. the direction of vi, since 

viis normalized to vi1. Then, we calculate the difference 

between the two vectors: 

ri=OIi−Diṽi . (5) 

Finally, a residual component is derived from 42 norm of the 

vector ri, 

Ni="ri". (6) 

Note that the dimensions of the mean spectral component 

µi ,the spectral line vector vi and  residual vector ri are the 

same as the number of channels, that is M, and the spectral 

line component Di and the residual component Ni are scalars. 

The main purpose of this decomposition is to concentrate 

noise, which is originally scattered in all the channels of an 

input image, into the two components, Diand Ni. The noise 

in the components is reduced in the next step. 
 

C. Filtering 

The spectral line component Diobtained in the previous step 

contains noise. Consequently, denoising the spectral line 

components is required in the spatial domain. We refine the 

spectral line component by denoising it with BM3D [13]. 

Since we iteratively apply BM3D, the denoising effect is 

adjusted not to be too strong. This procedure results in the 

filtered spectral line component Di. 

The residual component Nicontains a lot of weak noise. To 

filter them out, we adopt a two-phase denoising procedure. 

First, we apply the Geman McClure robust function [21] to 

reduce the noise with small intensities by theformula 

N 2 

w(N) i , (7) 
k + Ni 

Where k is a small constant. Afterward, it is added as the 

weight as 

N̂i=w (Ni)  Ni. (8) 

Then, the filtering step is followed by BM3D, which results in 

the residual component Ni. 

As for the mean spectral component µi, unlike the other 

Line vector ṽI ,we decompose the original pixel I ito the components, there is no need to apply filtering because it has 

Three  terms. We begin with calculating the difference vector of been already generated by averaging (1). 
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Ni 

= 

 

 

Fig. 6. Spectral decomposition: In local spectral component decomposition, 

eachpixelisdecomposedintoaspectralline vector,aspectrallinecomponent, and a 
residualcomponent. 

 

D. Recomposition 

The final step is recomposition of the resulting image from 

its constituent components. The expected image can 

reconstructed as follows (see Fig.6): 
 

 

Ii=µi+D iṽi+
N i

ri. (9) 

III. EXPERIMENT 

In the experiment, all the methods are implemented in 

MATLAB, except for calculating the mean spectral compo- 

nent, where the MEX file is used for running the box filter     

inC. 

A. Effect of SignFlip 

First, to discuss the importance of sign flip before filtering, 

we perform an experiment that emphasizes how it works on an 

image. The Jacobi relaxation used for the vector sign 

alignment significantly improves the performance by flipping 

the sign to the same direction as the local mean spectrum. 

Figure 7 shows the effect of the vector sign flip in our method. 

The top and bottom row show the results when the sign flip is 

not performed and performed, respectively. After PCA, the 

generated spectral line vectors are not smooth (top left). If we 

continue to the next steps without this procedure, the spectral 

line components and the filtered result are affected and fail to 

preserve the details. To avoid this problem, we use the Jacobi 

relaxation method for the spectral line vectors. As a result, the 

method can perform better as shown in the bottom images.The 

comparison of the final resultant images is depicted in Fig. 8. 

The difference can easily be noticed in some regions of the 

image. 

 
B. RGB ColorImage 

1) Parameter Setting: The parameters of the conventional 

methods are adjusted so as to give the best evaluation values. 

 

 
 

 

Fig. 7. The results obtained without sign flip (top) and with sign flip (bottom) 

for the spectral line vector (left), the spectral line component (middle), and  
the smoothingresult of spectral line component (right). 

 

 
 

  
 

 
 

 

 
Fig. 8. Effect of sign flip in the resultant image. From the left, (a) original 
image, (b) our method, and (c) our method without sign flip. 

 

 
On the other hand, for the conventional methods used in 

combination with our method, we set their parameters to give 

a similar degree of denoising. Then, we will show that our 

method preserves more vivid contrast than the others with the 

same degree ofdenoising. 

To achieve the expected results, the number of main itera- 

tions is set to 4. To calculate the spectral orientation, we set 

half of the window size to 3. We found after some trial-and- 

error that these values yield sufficient results for most of the 

tested images. 

2) Experimental Results: Before evaluating the whole of 

our method, we examine the contribution of our 

decomposition step. Only for Fig. 9, we use the anisotropic 

diffusion to denoise the spectral line component instead of 

BM3D to fairly evaluate the validity of the decomposition in 

the denoising process, and compare it with the stand-alone 

anisotropic diffusion. Thus, the two rows of Fig. 9 show the 

comparison with the anisotropic diffusion. Figure 9 (a) and (b) 

depict original images and noisy images, respectively, in 

which we add  the  Gaussian  noise  of  a  standard  deviation  

σ     0.06 

for normalized intensity range [0,  1]. Figure 9  (c)  and (d)  

are the results of the anisotropic diffusion alone, where the 

method is applied in the RGB and YCbCr color spaces, 

respectively, and (e) is obtained by the anisotropic diffusion 

after our decomposition. One can see that our method is able 

to significantly reduce the discoloration artifact, compared to 

the anisotropic diffusion used alone. The artifacts can be 

noticed distinctly in the background part of theimages. 

Furthermore, 
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Fig. 9 Cropped Salinas data, 47th channel for hybrid LCNN comparison. (a) 

Original (PSNR). (b) Noisy. (c) LCNN (35.20 dB). (d) Ours (37.59 dB). 
 

TABLE II 

MPSNR COMPARISON 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 
 

 
 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 
 

 
 

 
 

 
 

 

 

 

 
 

 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 

 
 

 

 

 
 

a noticeable visual difference. Meanwhile, the Salinas and 

Pavia University images show more significant visual differ- 

ence. As depicted by the red rectangle, the original image has 

stripes that can be recognized easier on our resultant images 

than on those of the other methods. 

For the Indian Pines, the overall image has a distinct 

difference in appearance between ours and the compared 

images. Both of VBM3D and VBM4D produce images with 

too smooth areas that results in a salient difference compared 

to the original image. In addition, they fail to preserve the 

straight line features in the images. Meanwhile, our method 

still performs better than the others. It is clear that for percep- 

tual appearance, our resulting image is the most similar to the 

original one. Despite the LCNN improvement, Fig. 16 to 20 

show that this hybrid method is lower in visual quality than 

ours. It takes  about 43  seconds to  employ our algorithm for  

a 200 200 35 image on the PC with Intel(R) Core(TM) i5-

4690 CPU @ 3.5 GHz, using unoptimized MATLAB codes. 

This is mainly due to the PCA calculation of 35 dimensions in 

our algorithm that costs muchtime. 

 
IV. CONCLUSION 

A new denoising method based on the spectral line has been 

proposed for the remote sensing field. Hyperspectral image 

denoising using a spectral line vector field uses the correlation 

among spectral information in the local region. The vectors 

are obtained by local spectral component decomposition fol- 

lowed by iterative filtering steps. Filtering the spectral line 

component and residual component gives significant effectsin 

Reducing the noise and smoothing results the image. 

Moreover, the use of local spectral components contributes to 

achieving better results compared with the result of the stand-

alone con- ventional method. The experiment demonstrated 

that the pro- posed method successfully achieved competitive 

performance compared to other powerful denoising methods. 

However, the increase in noise power and the number of 

channels processed affects the complexity of achieving more 

accurate spectral line vector estimation. Future work may 

involve solving this computationalcomplexity. 
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